Structural and Thermodynamic Analysis of a Three-Component Assembly Forming ortho-Iminophenylboronate Esters

Brette M. Chapin, ${ }^{\dagger}$ Pedro Metola, ${ }^{\dagger}$ Vincent M. Lynch, ${ }^{\dagger}$ John F. Stanton, ${ }^{*, \dagger}$ Tony D. James, ${ }^{*, \ddagger}$ and Eric V. Anslyn*, ${ }^{\dagger}$
${ }^{\dagger}$ Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
${ }^{\ddagger}$ Department of Chemistry, University of Bath, Bath BA2 7AY, U.K.

S Supporting Information

Abstract

Structural studies of a three-component assembly-a host and two distinct guests-were carried out using a combination of ${ }^{11} \mathrm{~B}$ and ${ }^{1} \mathrm{H}$ NMR. In aprotic solvent, the imino group that forms ortho to the boronic acid or boronate ester group can form a dative $\mathrm{N}-\mathrm{B}$ bond. In protic solvent, a molecule of solvent inserts between the nitrogen and boron atoms, partially ionizing the solvent molecule. Additionally, ${ }^{11} \mathrm{~B}$ NMR was used in combination with a seventh-order polynomial to calculate five binding constants for each of the individual steps in protic solvent. Comparison of these binding constants was used to establish positive cooperativity in the binding of the two guests.

INTRODUCTION

Host-guest equilibrium chemistry is typically described by one-to-one or two-to-one binding, and our group and others have previously published algebraic equations to describe the associated equilibria. ${ }^{1,2}$ However, there can exist systems in which one host binds two distinct guests, and a mathematical description of that complex equilibrium has not yet been described (Scheme 1).

Scheme 1. Three-Component Assembly with One Host and Two Distinct Guests

This three-component assembly allows for the possibilities of either guest binding the host first or, potentially, an entropically unlikely simultaneous binding of both guests in a termolecular reaction. If, as expected, the two guests do not bind simultaneously, there is also a possibility for either positive or negative cooperativity; that is, binding of the first guest could increase or decrease, respectively, the binding constant of the second guest relative to the binding constant in the absence of the first guest.

One paradigmatic example of a dual-guest equilibrium comes from the Bull and James groups, where they and their collaborators have developed a series of three-component
assemblies using boronic acids with the goal of generating chiral shift reagents. ${ }^{3-8}$ The enantio-discriminating unit is formed by the reaction of 2 -formylphenylboronic acid (2-FPBA), enantiopure 1,1'-bi-2-naphthol (BINOL), and an α-chiral primary amine. The three-component assembly forms a Schiff base and a boronate ester (Scheme 2). The different diastereomers formed have distinct ${ }^{1} \mathrm{H}$ NMR spectra, and the intensities thereof can be directly related to the enantiomeric composition of the original amine. Others have sought to exploit the reversibility and simplicity of this reaction to devise supramolecular architectures. ${ }^{9-11}$ This reaction is fast, highly efficient, and relatively simple, requiring no purification steps.

While the Bull-James assembly employs an ortho-imino group, one of the most common design elements that facilitate the recognition of diols at neutral pH is an ortho-aminomethyl group on a phenylboronic acid. This functionality leads to an increase in binding under physiological conditions. ${ }^{12,13}$ One consequence of the interest in such systems was the discovery by our group of the prevalence of two different types of interactions between the boronic acid functionality and the amine. ${ }^{14}$ Through the use of several coupled analytical techniques, such as ${ }^{11}$ B NMR spectroscopy, X-ray diffraction, and computational modeling, it was determined that two different possibilities exist for these compounds. The first one involves a dative bond formed between the nitrogen and the boron, long envisioned as the main mode of $\mathrm{N}-\mathrm{B}$ interaction (Scheme 3a). The other involves a single protic solvent

[^0]
Scheme 2. Three-Component Assembly Developed by the James and Bull Groups

Scheme 3. (a) N-B Interaction in Aprotic Solvent; (b) N-B Interaction in Protic Solvent

a)

Scheme 4. Three-Component Assembly with 2-FPBA, Catechol, and Benzylamine

Figure 1. Structures assigned to the peaks in the ${ }^{11} \mathrm{~B}$ and ${ }^{1} \mathrm{H}$ NMR titrations in aprotic solvent.
molecule inserting between the nitrogen and boron (Scheme 3b). By characterizing crystal structures for each of the different interaction modes and then subjecting each type of species to ${ }^{11}$ B NMR analysis, it was possible to assign distinct chemical shift values to each of the two possible variants of tetrahedral boron. One of the main conclusions of this work was that aprotic solvents favor the $\mathrm{N}-\mathrm{B}$ bonded form while protic solvents promote near-exclusive formation of the solventinserted mode of interaction. This was found for both boronic acids and boronate esters.

Thus, we reasoned that the same kind of analysis employed to structurally characterize ortho-(aminomethyl)phenylboronate complexes could be used to characterize orthoiminoarylboronate complexes such as those that arise in the Bull-James assembly. Therefore, our aims were twofold. First, an analysis of the Bull-James assembly could serve as a model system for a three-component assembly that binds two different guests, potentially displaying cooperativity, and second, we would be capable of deciphering the extents of $\mathrm{N}-\mathrm{B}$ bond or
solvent insertion using our previously developed ${ }^{11} \mathrm{~B}$ NMR spectroscopic methods.

The system we have elected to characterize is the threecomponent binding of ortho-formylphenylboronic acid (2FPBA) as host (B), with catechol (D) and benzylamine (A) as the two distinct guests (Scheme 4).

Herein, we describe the use of our established ${ }^{11} \mathrm{~B}$ NMR characterization methods in structural studies of in both aprotic and protic solvent. Further, we report an algebraic function for extracting the individual equilibrium constants involved in the study.

RESULTS AND DISCUSSION

In an effort to characterize the coordination modes and structures of the components involved in the Bull-James assembly, a number of ${ }^{11} \mathrm{~B}$ NMR titrations were undertaken. The chemical shifts for the boron resonances were referenced to numbers obtained and established in prior work. ${ }^{14,15}$ Peaks in the range of $25-35 \mathrm{ppm}$ are assigned to a boron atom in an
(a)

Concentration
in mM
[B] [A] [D]
$10 \quad 12 \quad 10$
(b)

10120 r. 10
$10 \quad 10$

- 8
106

104
10
10

$40 \quad 38 \quad 36$ 34 $32 \begin{array}{llllllllllllllll} \\ 40 & 28 & 26 & 24 & 22 & 20 & 18 & 16 & 14 & 12 & 10 & 8 & 6 & 4 & 2 & 0\end{array}$

Concentration in mM
[B] [A] [D]
$10 \quad 12 \quad 10$

10
$10 \quad 0$

Figure 2. ${ }^{11} \mathrm{~B}(\mathrm{a})$ and ${ }^{1} \mathrm{H}(\mathrm{b})$ spectra showing the addition of benzylamine $(0-12 \mathrm{mM})$ into 2 -FPBA $(10 \mathrm{mM})$ in $\mathrm{CD}_{3} \mathrm{CN}$ with the addition of one equivalent $(10 \mathrm{mM})$ of catechol at the end of the titration. The bottom spectrum is 2-FPBA alone.
arylboronic acid that displays a trigonal planar geometry, while tetrahedral boron appears further upfield. For these species, previous examples show that signals attributed to a $\mathrm{N}-\mathrm{B}$ bond are observed at approximately $10-15 \mathrm{ppm}$ and those corresponding to solvent insertion are found at approximately $5-10 \mathrm{ppm}$. While such resonances present clear distinctions, several other resonances appear in the experiments discussed below, which are attributed to intermediates in the condensation mechanisms. Some of these assignments are speculative, albeit quite logical, based upon the mechanisms of Schiff base formation, boronate ester formation, and the $\mathrm{p} K_{\mathrm{a}}$ values of iminium and ammonium groups. Additionally, ${ }^{1} \mathrm{H}$ NMR titrations run in parallel with the ${ }^{11} \mathrm{~B}$ NMR titrations were used to confirm or correct the ${ }^{11} \mathrm{~B}$ assignments. While ${ }^{1} \mathrm{H}$ NMR was a useful tool in this sense, ${ }^{11} \mathrm{~B}$ NMR still brings with it the benefits of having less complicated spectra and distinctive chemical shifts for the two modes of binding for tetrahedral boron.
${ }^{11} \mathrm{~B}$ and ${ }^{1} \mathrm{H}$ NMR Experiments Performed in Aprotic Solvent. Four titrations were carried out in acetonitrile- d_{3} in an attempt to measure the four bimolecular binding constants shown in Scheme 1. Figure 1 shows all of the structures that have been assigned to the NMR peaks in the titrations that follow.

In the first study, benzylamine ($\mathrm{A}, 0-12 \mathrm{mM}$) was titrated into 2-FPBA (B, 10 mM) in acetonitrile, and an equivalent of catechol ($\mathrm{D}, 10 \mathrm{mM}$) was added at the end of the titration (Figure 2). The first ${ }^{11} \mathrm{~B}$ spectrum (Figure 2a) shows 2-FPBA
alone, with only one signal at 29.5 ppm , corresponding to the trigonal boron atom of 2-FPBA, 1 . When benzylamine is first added, a second signal at 7.5 ppm grows in. We attribute this peak to a structure with a hydroxylated boron atom, 2, a result of the ionization of the small amount of water that is present in solution by the weakly basic amine. This supposition is supported by the presence of the downfield aldehyde peak at 10.4 ppm in the ${ }^{1} \mathrm{H}$ spectrum (Figure 2b). Compound 2 is in equilibrium with 3, a cyclic hemiacetal. ${ }^{16,17}$ Structure 3 is consistent with the very small ${ }^{1} \mathrm{H}$ peak at 8.6 ppm . The hypothesis that structures 2 and/or 3 form upon ionization of water is supported by a control experiment in which triethylamine was added to 2-FPBA (1) in acetonitrile. $\mathrm{A}{ }^{11} \mathrm{~B}$ peak at 6.5 ppm in the presence of triethylamine is comparable to the peak at 7.5 ppm in Figure 2a. Since triethylamine is a tertiary amine and cannot form an imine, this result is consistent with formation of a tetrahedral, anionic boron species. The counterion for either 2 or 3 is benzylammonium, 4. As additional amine is added, a third ${ }^{11} \mathrm{~B}$ signal arises at 9 ppm. For this peak, we propose the hemiaminal species 5 and 6 as potential structures. (A hemiaminal species similar to 5 , but with a trigonal boron, has been reported previously.) ${ }^{18}$ These species would explain the presence of the ${ }^{1} \mathrm{H}$ peak at 8.25 ppm , corresponding to the methine proton, and the methylene peak is reasonably expected to overlap with the methylene peak of 4, because the nitrogen atom either carries a positive formal charge or is the donor in a dative bond. In this interpretation of the ${ }^{11} \mathrm{~B}$ NMR spectra, the first addition of amine acts to

Figure 3. ${ }^{11} \mathrm{~B}(\mathrm{a})$ and ${ }^{1} \mathrm{H}(\mathrm{b})$ spectra showing the addition of catechol $(0-12 \mathrm{mM})$ into 2-FPBA $(10 \mathrm{mM})$ and benzylamine $(10 \mathrm{mM})$ in $\mathrm{CD} \mathrm{C}_{3} \mathrm{CN}$. The bottom spectrum is 2-FPBA alone.
dehydrate the solution by being protonated and delivering an equivalent of hydroxide to the boron. As additional amine is added, it begins to incorporate into the assembly. Peaks corresponding to 2-FPBA (1) and the hydroxylated 2-FPBA species (2 and 3) both disappear as the $5 / 6$ peak grows. With increasing concentration of amine, a signal at 15.7 ppm dominates the ${ }^{11} \mathrm{~B}$ spectrum, while a minor peak at 26.6 ppm appears. The peak at 15.7 ppm is consistent with a $\mathrm{N}-\mathrm{B}$ interaction, as shown in structure 7 , and the peak at 26.6 ppm is a new trigonal species. We attribute this peak to a small amount of an open-form structure 8 . That is, we believe this is an imine without a Schiff base interaction. It appears that the $\mathrm{N}-\mathrm{B}$ bonded and open-form structures, 7 and 8, respectively, are in equilibrium with one another, as the ratio between them remains constant. The open form could be the E-imine without the $\mathrm{N}-\mathrm{B}$ bond, but we suspect that it is more likely the Z imine, which cannot form the N-B bond. Finally, when catechol is added, the ${ }^{11} \mathrm{~B}$ spectrum shows only one peak at 13.5 ppm . This chemical shift is consistent with an $\mathrm{N}-\mathrm{B}$ interaction, and since it is distinct from the shift of the boronic acid, 7 , we attribute this peak to the full assembly, 9.

In the second titration, catechol $(\mathrm{D}, 0-12 \mathrm{mM})$ was added to 2-FPBA (B, 10 mM) and benzylamine ($\mathrm{A}, 10 \mathrm{mM}$) (Figure 3) in acetonitrile. The first ${ }^{11} \mathrm{~B}$ spectrum (Figure 3a) shows 2FPBA alone, with one signal at 29.5 ppm , corresponding to trigonal boron in 2-FPBA (1). The 1:1 mixture of 2-FPBA and benzylamine gives a signal at 15.7 ppm , which can be attributed to the $\mathrm{N}-\mathrm{B}$ bonded imine 7 . As well, the peak attributed to
structure $\mathbf{8}$ is present and still appears to be at equilibrium with 7. As expected, this spectrum is identical to the spectrum with one equivalent of amine in Figure 2. As catechol is added, the ${ }^{11} \mathrm{~B}$ signal for the imine disappears and is replaced by a signal at 13.5 ppm , which represents the full three-component assembly, 9. The imine presumably has a weaker $\mathrm{N}-\mathrm{B}$ bond than the full assembly, as its signal is further downfield. This change suggests positive cooperativity in the sense that the binding of the diol to boronic acid strengthens the binding (increases the binding constant) of amine binding to the boronic acid.

In the third titration, catechol ($\mathrm{D}, 0-12 \mathrm{mM}$) was titrated into 2-FPBA (B, 10 mM) and an equivalent of benzylamine (A, 10 mM) was added at the end of the titration (Figure 4). The first ${ }^{11} \mathrm{~B}$ spectrum (Figure 4a) shows 2-FPBA alone. The $1: 1$ mixture of 2-FPBA and catechol shows signals for the boronic acid 1 as well as the boronate ester 11, at 32.4 ppm . The addition of catechol to form the boronate ester results in a downfield shift, suggesting that catechol is more electronwithdrawing than the hydroxyl groups. The ${ }^{1} \mathrm{H}$ spectrum (Figure 4b) is consistent with this assignment, as the catechol peaks centered at 6.7 ppm (12) shift to 7.3 ppm (11). Unlike the addition of amine that leads to full condensation on the aldehyde at one equivalent or slightly more, the combination of catechol with the boronic acid is far from complete at one equivalent. Yet, addition of an equivalent of amine leads to full complexation of the catechol. Thus, it appears that the amine cooperatively assists the condensation of catechol.

Figure 4. ${ }^{11} \mathrm{~B}(\mathrm{a})$ and ${ }^{1} \mathrm{H}(\mathrm{b})$ spectra showing the addition of catechol $(0-12 \mathrm{mM})$ into 2-FPBA $(10 \mathrm{mM})$ in $\mathrm{CD}_{3} \mathrm{CN}$ with the addition of one equivalent $(10 \mathrm{mM})$ of benzylamine at the end of the titration. The bottom spectrum is 2-FPBA alone.

In the fourth titration, benzylamine ($\mathrm{A}, 0-12 \mathrm{mM}$) was titrated into 2-FPBA (B, 10 mM) and catechol (D, 10 mM) (Figure 5). The first ${ }^{11} \mathrm{~B}$ spectrum (Figure 5a) shows 2-FPBA alone. The $1: 1$ mixture of 2 -FPBA and catechol again shows signals for the boronic acid 1 and the boronate ester 11. The ${ }^{1} \mathrm{H}$ shift of the catechol peaks in Figure 4b is also evident in Figure 5 b . As benzylamine is added, the signal for the threecomponent assembly begins to dominate and then becomes the sole signal when $[\mathrm{A}]=10 \mathrm{mM}$.

Throughout these four titrations, various hemiaminal and $\mathrm{N}-\mathrm{B}$ bonded species were assigned using a combination of ${ }^{11} \mathrm{~B}$ and ${ }^{1} \mathrm{H}$ peaks. A crystal grown from acetonitrile confirms our assignment of the $\mathrm{N}-\mathrm{B}$ bond in the 1:1:1 complex (Figure 6). This N-B bond measures $1.65 \AA$, which is consistent with a dative bond. The imine bond is $1.28 \AA$, which is a typical bond length for a $\mathrm{C}=\mathrm{N}$ bond.
${ }^{11} B$ and ${ }^{1} \mathrm{H}$ NMR Experiments Performed in Protic Solvent. Four titrations were carried out in methanol- d_{4} in order to measure the four bimolecular binding constants shown in Scheme 1 . Figure 7 shows all of the structures that have been assigned to the NMR peaks in the titrations that follow.

For the first study in protic media, benzylamine (A, 0-14 mM) was titrated into 2-FPBA (B, 10 mM) in methanol, and an equivalent of catechol ($\mathrm{D}, 10 \mathrm{mM}$) was added at the end of the titration (Figure 8). The first ${ }^{11} \mathrm{~B}$ spectrum (Figure 8a) shows 2-FPBA alone, with two signals at 30 and 31 ppm , corresponding to trigonal boron. We attribute one signal to the
boronate ester formed with the solvent (13) and the other signal to a cyclic boronate acetal (14). This is consistent with the ${ }^{1} \mathrm{H}$ spectrum (Figure 8 b), which shows a singlet at 6 ppm for the acetal proton. As amine is added, a ${ }^{11} \mathrm{~B}$ signal at 10.6 ppm emerges. This signal corresponds to the solvent-inserted imine, 15. When an equivalent of catechol is added, no new peaks emerge, and the signal remains at 10.6 ppm . Presumably, the imine and the full assembly, 16, coincidentally have the same chemical shift. We have previously seen the same coincidental overlap in our study of ortho-(aminomethyl)phenylboronic acid condensation with diols in methanol. ${ }^{14}$

In the second titration, catechol ($\mathrm{D}, 0-12 \mathrm{mM}$) was titrated into 2-FPBA (B, 10 mM) and benzylamine ($\mathrm{A}, 10 \mathrm{mM}$) (Figure 9). The first ${ }^{11} \mathrm{~B}$ spectrum (Figure 9a) shows 2-FPBA alone. The 1:1 mixture of 2-FPBA and benzylamine gives a signal at 10.6 ppm , and titrating in catechol does not effect any change due to the chemical shift overlap of $\mathbf{1 5}$ and 16. Importantly, in this titration there is only one set of aromatic peaks for catechol in the ${ }^{1} \mathrm{H}$ spectrum (Figure 9a). It is possible that catechol is thus only in one form (all bound or none bound) or that in the ${ }^{1} \mathrm{H}$ spectrum, as well as the ${ }^{11} \mathrm{~B}$ spectrum, there is chemical shift overlap between species.

In the third titration, catechol (D, $0-60 \mathrm{mM}$) was titrated into 2-FPBA (B, 10 mM) and an equivalent of benzylamine (A, 10 mM) was added at the end of the titration (Figure 10). The first ${ }^{11} \mathrm{~B}$ spectrum (Figure 10a) shows 2-FPBA alone. As catechol was added, a peak grew in at 29.3 ppm . This peak in

Figure 5. ${ }^{11} \mathrm{~B}(\mathrm{a})$ and ${ }^{1} \mathrm{H}(\mathrm{b})$ spectra showing the addition of benzylamine $(0-14 \mathrm{mM})$ into 2 -FPBA $(10 \mathrm{mM})$ and catechol $(10 \mathrm{mM})$ in $\mathrm{CD} \mathrm{C}_{3} \mathrm{CN}$. The bottom spectrum is 2-FPBA alone.

Figure 6. Crystal structure of 2-formylphenylboronic acid, catechol, and benzylamine; the crystal was grown in acetonitrile.
the trigonal boron region was thought to be the boronate ester formed with catechol, 11. However, the only aldehyde peak in the ${ }^{1} \mathrm{H}$ spectrum (Figure 10b) is for the methanol ester, 13. For this reason, we propose structure 17, which still contains a boronate ester, but no longer contains an aldehyde due to attack of the solvent. This is reasonable because the acetal 14 is observed, so the acetal or hemiacetal 17 can be expected to form under the same conditions. After one equivalent of
benzylamine was added, the signal at 10.6 ppm demonstrated formation of the three-component assembly, 16. Once again, as in acetonitrile, catechol does not bind strongly enough to fully convert the boronic acid (in this case, methyl boronate ester) to catechol boronate ester until an equivalent of amine is added. Note here that formation of the catechol boronate ester does not go to completion even in the presence of six equivalents of catechol. This titration shows that there is indeed ${ }^{1} \mathrm{H}$ chemical shift overlap between species; even as 13, 14, and 17 can be seen to form 15 and 16 in the ${ }^{11} \mathrm{~B}$ spectrum as amine is added, the peaks for catechol in the ${ }^{1} \mathrm{H}$ spectrum still remain unchanged.

In the fourth titration, benzylamine ($\mathrm{A}, 0-14 \mathrm{mM}$) was titrated into 2-FPBA (B, 10 mM) and catechol (D, 10 mM) (Figure 11). The first ${ }^{11} \mathrm{~B}$ spectrum (Figure 11a) shows 2-FPBA alone. The 1:1 mixture of 2-FPBA and catechol shows signals for the methanolic boronate ester 13, the boronate acetal 14, and the catechol boronate ester 17, just as in Figure 10. As benzylamine is added, the signal for the three-component assembly begins to dominate.

In the four titrations in methanol, tetrahedral boron was always in the range of what has been assigned to solventinserted species in ortho-(aminomethyl)phenylboronic acids, and thus the ortho-iminophenylboronic acids and boronate esters were assigned to solvent-inserted species as well.

Deriving a Polynomial for the Three-Component Assembly. For the purposes of deriving the mathematical equations that describe the complex equilibrium of the three-

Figure 7. Structures assigned to the peaks in the ${ }^{11} \mathrm{~B}$ and ${ }^{1} \mathrm{H}$ NMR titrations in protic solvent.

Figure 8. ${ }^{11} \mathrm{~B}(\mathrm{a})$ and ${ }^{1} \mathrm{H}(\mathrm{b})$ spectra showing the addition of benzylamine $(0-14 \mathrm{mM})$ into 2-FPBA $(10 \mathrm{mM})$ in $\mathrm{CD}_{3} \mathrm{OD}$ with the addition of one equivalent $(10 \mathrm{mM})$ of catechol at the end of the titration. The bottom spectrum is 2-FPBA alone.
component assembly, the binding constants and species involved will be defined as shown in Scheme 5.

We begin the process by outlining the system of equations as defined by the association constant expressions (1-5) and mass balances (6-8).

$$
\begin{align*}
& K_{1}[\mathrm{~A}][\mathrm{B}]=[\mathrm{AB}] \tag{1}\\
& K_{2}[\mathrm{~B}][\mathrm{D}]=[\mathrm{BD}] \tag{2}\\
& K_{3}[\mathrm{AB}][\mathrm{D}]=[\mathrm{ABD}] \tag{3}\\
& K_{4}[\mathrm{BD}][\mathrm{A}]=[\mathrm{ABD}] \tag{4}\\
& K_{5}[\mathrm{~A}][\mathrm{B}][\mathrm{D}]=[\mathrm{ABD}] \tag{5}\\
& {[\mathrm{A}]_{\mathrm{T}}=[\mathrm{A}]+[\mathrm{AB}]+[\mathrm{ABD}]} \tag{6}\\
& {[\mathrm{B}]_{\mathrm{T}}=[\mathrm{B}]+[\mathrm{AB}]+[\mathrm{BD}]+[\mathrm{ABD}]} \tag{7}
\end{align*}
$$

$$
\begin{equation*}
[\mathrm{D}]_{\mathrm{T}}=[\mathrm{D}]+[\mathrm{BD}]+[\mathrm{ABD}] \tag{8}
\end{equation*}
$$

Our objective is to express $[A B D]$ as a function of the constants $K_{\mathrm{i}},[\mathrm{A}]_{\mathrm{T}},[\mathrm{B}]_{\mathrm{T}}$, and $[\mathrm{D}]_{\mathrm{T}}$, and one variable which we choose to be $[\mathrm{B}]$. Note that $[\mathrm{X}]_{\mathrm{T}}$ denotes the initial concentration of X , and the total amount of all species that contain X at equilibrium. Substitutions give eq 9 :

$$
\begin{align*}
{[\mathrm{B}]_{\mathrm{T}}=} & {[\mathrm{B}]+K_{1}[\mathrm{~B}]\left(\frac{[\mathrm{A}]_{\mathrm{T}}-[\mathrm{ABD}]}{1+K_{1}[\mathrm{~B}]}\right) } \\
& +K_{2}[\mathrm{~B}]\left(\frac{[\mathrm{D}]_{\mathrm{T}}-[\mathrm{ABD}]}{1+K_{2}[\mathrm{~B}]}\right)+[\mathrm{ABD}] \tag{9}
\end{align*}
$$

which can be rearranged and simplified to eq 10 :
(a)

Concentration
in mM
[B] [A] [D]
$10 \quad 10 \quad 12$
$10 \quad 10 \quad 10$
$10 \quad 10 \quad 8$ \qquad $10 \quad 10 \quad 6$ \qquad
$10 \quad 10 \quad 4$

$10 \quad 10 \quad 2$
$10 \quad 10 \quad 0$ \qquad

(b)

Concentration in mM
[B] [A] [D]
$10 \quad 10 \quad 12$

- $10 \quad 10 \quad 10$

Figure 10. ${ }^{11} \mathrm{~B}$ (a) and ${ }^{1} \mathrm{H}(\mathrm{b})$ spectra showing the addition of catechol $(0-60 \mathrm{mM})$ into 2-FPBA $(10 \mathrm{mM})$ in $\mathrm{CD}_{3} \mathrm{OD}$ with the addition of one equivalent $(10 \mathrm{mM})$ of benzylamine at the end of the titration. The bottom spectrum is 2-FPBA alone.

$$
\begin{aligned}
\rho_{6}= & K_{1} K_{2}\left(2 K_{2}+K_{1}\left(2+K_{2}[\mathrm{~A}]_{\mathrm{T}}-2 K_{2}[\mathrm{~B}]_{\mathrm{T}}\right.\right. \\
& \left.\left.+K_{2}[\mathrm{D}]_{\mathrm{T}}\right)\right) \\
\rho_{7}= & K_{1}^{2} K_{2}^{2} \\
\lambda_{\mathbf{0}}= & {[\mathrm{B}]_{\mathrm{T}} } \\
\lambda_{\mathbf{1}}= & -1-K_{1}[\mathrm{~A}]_{\mathrm{T}}-K_{2}[\mathrm{D}]_{\mathrm{T}}+2\left(K_{1}+K_{2}\right)[\mathrm{B}]_{\mathrm{T}} \\
\lambda_{2}= & K_{1}^{2}\left(-[\mathrm{A}]_{\mathrm{T}}+[\mathrm{B}]_{\mathrm{T}}\right)+K_{2}\left(-2+K_{2}[\mathrm{~B}]_{\mathrm{T}}-K_{2}[\mathrm{D}]_{\mathrm{T}}\right) \\
& -K_{1}\left(2+2 K_{2}[\mathrm{~A}]_{\mathrm{T}}-3 K_{2}[\mathrm{~B}]_{\mathrm{T}}+2 K_{2}[\mathrm{D}]_{\mathrm{T}}\right) \\
\lambda_{3}= & -K_{2}^{2}-K_{1}^{2}\left(1+K_{2}[\mathrm{~A}]_{\mathrm{T}}+K_{2}[\mathrm{D}]_{\mathrm{T}}\right) \\
& -K_{1} K_{2}\left(3+K_{2}[\mathrm{~A}]_{\mathrm{T}}+K_{2}[\mathrm{D}]_{\mathrm{T}}\right) \\
\lambda_{4}= & K_{1} K_{2}\left(K_{1}\left(K_{1}+K_{2}\right)[\mathrm{A}]_{\mathrm{T}}+K_{2}\left(K_{1}+K_{2}\right)[\mathrm{D}]_{\mathrm{T}}\right. \\
& \left.-\left(K_{1}^{2}+3 K_{1} K_{2}+K_{2}^{2}\right)[\mathrm{B}]_{\mathrm{T}}\right) \\
\lambda_{5}= & K_{1} K_{2}\left(K_{2}^{2}+K_{1}^{2}\left(1+2 K_{2}[\mathrm{~A}]_{\mathrm{T}}-2 K_{2}[\mathrm{~B}]_{\mathrm{T}}+K_{2}[\mathrm{D}]_{\mathrm{T}}\right)\right. \\
& \left.+K_{1} K_{2}\left(3+K_{2}[\mathrm{~A}]_{\mathrm{T}}-2 K_{2}[\mathrm{~B}]_{\mathrm{T}}+2 K_{2}[\mathrm{D}]_{\mathrm{T}}\right)\right) \\
\lambda_{6}= & K_{1}^{2} K_{2}^{2}\left(2 K_{2}+K_{1}\left(2+K_{2}[\mathrm{~A}]_{\mathrm{T}}-K_{2}[\mathrm{~B}]_{\mathrm{T}}+K_{2}[\mathrm{D}]_{\mathrm{T}}\right)\right) \\
\lambda_{7}= & K_{1}^{3} K_{2}^{3}
\end{aligned}
$$

Application of the Polynomial to the Three-Component Assembly. Now we turn to the application of the polynomial derived in the section above. In theory, K_{1} could be determined using the integrations from Figure 2 (aprotic media) and Figure 8 (protic media), K_{3} could be determined using Figure 3 and Figure 9, K_{2} could be determined using Figure 4 and Figure 10, and K_{4} could be determined using Figure 5 and Figure 11. However, some of these theoretically possible calculations have complications that render this approach impossible. In acetonitrile, K_{1} cannot be measured because formation of the imine (AB) is very nearly quantitative. Thus, the binding constant is too large to calculate using NMR spectroscopy. Similarly, K_{3} cannot be determined in acetonitrile because the three-component assembly forms nearly quantitatively from AB and D . In methanol, K_{3} cannot be calculated because the chemical shift of $A B$ is indistinguishable from the chemical shift of ABD. In both solvents, K_{4} cannot be calculated because the first step, formation of the boronate ester (BD), is not complete, and thus adding amine would conflate the two steps whose individual binding constants we wish to measure.

This means that the only individual steps we can measure by integration of the ${ }^{11} \mathrm{~B}$ NMR spectra is the formation of BD in both solvents, which is represented by the binding constant K_{2}, and the formation of $A B$ in methanol, which is represented by the binding constant K_{1}. Thus, we focused solely on analysis in methanol because both K_{1} and K_{2} could be determined.

in mM
[B] [A] [D]
10
10

$10 \quad 0$

$10 \quad 0$

10
100

$$
\begin{array}{lllll}
34 & 32 & \begin{array}{llll}
30 & 28 & 26 \\
\mathrm{ppm}
\end{array} &
\end{array}
$$

Figure 12. Portion of Figure 11a showing the integrations of the B (structures 13 and 14) and BD (structure 17) peaks.

Table 1. Calculated Values of [B], [BD], and [D] from the Integrations of ${ }^{11}$ B NMR Peaks Corresponding to B and BD

$[\mathbf{D}]_{\mathrm{T}}, \mathrm{mM}$	$[\mathbf{B}], \mathrm{mM}$	$[\mathbf{B D}], \mathrm{mM}$	$[\mathbf{D}], \mathrm{mM}$	$\boldsymbol{K}_{2}, \mathrm{M}^{-1}$
5	7.61	2.39	2.61	121
10	6.04	3.96	6.04	109
20	4.03	5.97	14.0	106
			Average	$\mathbf{1 1 2}$

thermodynamic parameter. Given the fact that $K_{5}=K_{1} \times K_{3}=$ $K_{2} \times K_{4}$, and with K_{1}, K_{2}, and K_{5} known, we can calculate K_{3} and K_{4}. To execute this approach, Figure 11 was reexamined. K_{4} could not be calculated from this titration because the reaction corresponding to K_{2} was incomplete, but this titration can still be used because it contains A, B, and D , all simultaneously. For a given concentration of $[\mathrm{A}]_{\mathrm{T}}=4 \mathrm{mM}$, [B] was calculated by integrating all peak areas to give [B] = 5.417 mM . With a constant $[\mathrm{A}]_{\mathrm{T}}$ and measured variable $[\mathrm{B}], K_{5}$ was calculated to be $2.69 \times 10^{6} \mathrm{M}^{-2}$ using Wolfram Mathematica. The calculated values of K_{1}, K_{2}, and K_{5} were then used to determine K_{3} and K_{4}. The summary of binding constants is shown in Table 2.

To evaluate cooperativity, the values of K_{1} and K_{4} should be compared (since these binding constants correspond to addition of amine) and the values of K_{2} and K_{3} should be compared (since these binding constants correspond to the addition of diol). Since K_{4} is greater than K_{1}, and K_{3} is greater than K_{2}, it can be concluded that both guests experience positive cooperativity. In other words, the binding of a guest is improved when the other guest has already bound, and the two binding events reinforce one another. In this way, the numerical

Table 2. Summary of Binding Constants in Methanol

Binding Constant	Value a
K_{1}	$1100 \pm 157 \mathrm{M}^{-1}$
K_{2}	$112 \pm 16 \mathrm{M}^{-1}$
K_{3}	$2.45 \times 10^{3} \pm 350 \mathrm{M}^{-1}$
K_{4}	$2.40 \times 10^{4} \pm 3.43 \times 10^{3} \mathrm{M}^{-1}$
K_{5}	$2.69 \times 10^{6} \pm 3.84 \times 10^{5} \mathrm{M}^{-2}$

${ }^{a}$ The error for K_{2} is the twice the standard deviation of three measurements for K_{2}. This error is 14.3% of the value, so the reported error for each of the other four K_{i} is 14.3% of the value.
analysis mirrors the structural interpretation of binding throughout the ${ }^{11} \mathrm{~B}$ and ${ }^{1} \mathrm{H}$ NMR titrations.

CONCLUSIONS

We have examined the binding of a three-component assembly that forms ortho-iminophenylboronate esters. Like ortho(aminomethyl)phenylboronic acids and boronate esters, these assemblies form $\mathrm{N}-\mathrm{B}$ bonds in aprotic solvent and solventinserted species in protic solvent. We have also demonstrated that the equilibrium between one host and two distinct guests can be described by a seventh-order polynomial and that this polynomial can be used along with ${ }^{11} \mathrm{~B}$ NMR data to calculate the five equilibrium constants involved in this complex equilibrium in methanol. Finally, the comparison of these five equilibrium constants leads to the conclusion that guest binding is cooperative, in that binding one guest strengthens the binding of the second guest.

EXPERIMENTAL SECTION

Reagents and solvents were used as purchased from commercial sources, with the exception of 2 -formylphenylboronic acid. 2-FPBA was recrystallized from dichloromethane in order to remove boric acid. When present, boric acid displays a ${ }^{11} \mathrm{~B}$ NMR signal at 19 ppm .

Stock solutions of 2 -formylphenylboronic acid, benzylamine, and catechol were made to be 70 mM in either $\mathrm{CD}_{3} \mathrm{OD}$ or $\mathrm{CD}_{3} \mathrm{CN}$. Then separate quartz NMR tubes for each sample were loaded with each component (see SI for details). The samples were stored overnight in a refrigerator, and ${ }^{11} \mathrm{~B}$ and ${ }^{1} \mathrm{H}$ NMR spectra were obtained the next day.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.6b01495.
${ }^{11} \mathrm{~B}$ NMR acquisition parameters, solution preparation tables, ${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ (when appropriate) spectra of individual components, full derivation of the polynomial, and crystallographic material (PDF)
Crystallographic data (CIF)

AUTHOR INFORMATION

Corresponding Authors

*anslyn@austin.utexas.edu
*jfstanton@gmail.com
*t.d.james@bath.ac.uk

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank Steve Sorey and Angela Spangenberg for their help with the NMR studies. E.V.A. thanks Dr. Michael

Starbird for initial discussions about the mathematics of the three-component system. All authors thank the National Science Foundation (Grant CHE-1212971), and E.V.A. additionally thanks the Welch Regents Chair (F-0046) for funding.

- REFERENCES

(1) Hargrove, A. E.; Zhong, Z.; Sessler, J. L.; Anslyn, E. V. New J. Chem. 2010, 34 (2), 348-354.
(2) Thordarson, P. Chem. Soc. Rev. 2011, 40 (3), 1305-1323.
(3) Perez-Fuentes, Y.; Kelly, A. M.; Fossey, J. S.; Powell, M. E.; Bull, S. D.; James, T. D. Nat. Protoc. 2008, 3 (2), 210-214.
(4) Kelly, A. M.; Perez-Fuentes, Y.; Fossey, J. S.; Yeste, S. L.; Bull, S. D.; James, T. D. Nat. Protoc. 2008, 3 (2), 215-219.
(5) Yeste, S. L.; Powell, M. E.; Bull, S. D.; James, T. D. J. Org. Chem. 2009, 74 (1), 427-430.
(6) Mirri, G.; Bull, S. D.; Horton, P. N.; James, T. D.; Male, L.; Tucker, J. H. R. J. Am. Chem. Soc. 2010, 132 (26), 8903-8905.
(7) Metola, P.; Anslyn, E. V.; James, T. D.; Bull, S. D. Chem. Sci. 2012, 3 (1), 156-161.
(8) Shcherbakova, E. G.; Minami, T.; Brega, V.; James, T. D.; Anzenbacher, P. J. Angew. Chem., Int. Ed. 2015, 54 (24), 7130-7133.
(9) Hutin, M.; Bernardinelli, G.; Nitschke, J. R. Chem. - Eur. J. 2008, 14 (15), 4585-4593.
(10) Galbraith, E.; Kelly, A. M.; Fossey, J. S.; Kociok-Koehn, G.; Davidson, M. G.; Bull, S. D.; James, T. D. New J. Chem. 2009, 33 (1), 181-185.
(11) Arnal-Herault, C.; Pasc, A.; Michau, M.; Cot, D.; Petit, E.; Barboiu, M. Angew. Chem., Int. Ed. 2007, 46 (44), 8409-8413.
(12) Wulff, G. Pure Appl. Chem. 1982, 54 (11), 2093-2102.
(13) Wulff, G.; Lauer, M.; Boehnke, H. Angew. Chem. 1984, 96 (9), 714-716.
(14) Zhu, L.; Shabbir, S. H.; Gray, M.; Lynch, V.; Sorey, S.; Anslyn, E. V. J. Am. Chem. Soc. 2006, 128 (4), 1222-1232.
(15) Collins, B. E.; Sorey, S.; Hargrove, A. E.; Shabbir, S. H.; Lynch, V.; Anslyn, E. V. J. Org. Chem. 2009, 74 (11), 4055-4060.
(16) Lulinski, S.; Madura, I.; Serwatowski, J.; Szatylowicz, H.; Zachara, J. New J. Chem. 2007, 31, 144-154.
(17) Gutierrez-Moreno, N. J.; Medrano, F.; Yatsimirsky, A. K. Org. Biomol. Chem. 2012, 10 (34), 6960-6972.
(18) Adamczyk-Wozniak, A.; Madura, I.; Velders, A. H.; Sporzynski, A. Tetrahedron Lett. 2010, 51 (47), 6181-6185.

[^0]: Received: June 21, 2016
 Published: September 2, 2016

